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Abstract. A full (triangular) quantum deformation ofso(3, 2) is presented by considering
this algebra as the conformal algebra of the(2 + 1)-dimensional Minkowskian spacetime.
Non-relativistic contractions are analysed and used to obtain quantum Hopf structures for the
conformal algebras of the 2+ 1 Galilean and Carroll spacetimes. Relations between the latter
and the null-plane quantum Poincaré algebra are studied.

1. Introduction

The Lie algebraM3 of the group of conformal transformations in the(2+1)-Minkowskian
spacetime is a ten-dimensional Lie algebra isomorphic toso(3, 2). We consider the basis
{J, P0, Pi,Ki, C0, Ci,D} (i = 1, 2) whereJ generates rotations,P0 time translations,Pi
space translations,Ki boosts,C0 andCi special conformal transformations, andD dilations.
The Lie brackets ofM3 are

[J,Ki ] = εijKj [J, Pi ] = εijPj [J,Ci ] = εijCj
[Ki, P0] = Pi [Ki, Pj ] = δijP0 [K1,K2] = −J
[Ki, C0] = Ci [Ki, Cj ] = δijC0 [P0, C0] = D (1.1)
[P0, Ci ] = −Ki [C0, Pi ] = −Ki [Pi, Cj ] = −δijD + εij J
[D,Pµ] = Pµ [D,Cµ] = −Cµ [Pµ, Pν ] = 0 [Cµ,Cν ] = 0
[J, P0] = 0 [J,C0] = 0 [D, J ] = 0 [D,Ki ] = 0

whereεij is antisymmetric withε12 = 1, ε21 = −1, εii = 0, and from now on we assume
thatµ, ν = 0, 1, 2 andi, j = 1, 2. The 2+1 Poincaré algebra,P(2+1) ≡ 〈J, P0, Pi,Ki〉, is
a Lie subalgebra ofM3; moreover, if we add the dilation generatorD toP(2+1) we get the
Weyl Lie subalgebraP(2+ 1). Hence we have the sequenceP(2+ 1) ⊂ P(2+ 1) ⊂M3.

The two non-relativistic limits of the Poincaré algebraP(2+1) are the GalileanG(2+1)
and CarrollC(2+1) algebras which correspond, in this order, to a speed-space and a speed-
time contraction ofP(2+ 1) [1]. These contraction processes can be implemented at a
conformal level in order to obtain the conformal algebras of the 2+ 1 Galilean and Carroll
spacetimes [2], here denotedG3 andC3, by applying the following mappings to the generators
of M3:

Speed-space contraction:J → J P0→ P0 C0→ C0 D→ D

M3→ G3 Pi → εPi Ki → εKi Ci → εCi
(1.2)

Speed-time contraction:J → J Pi → Pi Ci → Ci D→ D

M3→ C3 P0→ εP0 Ki → εKi C0→ εC0.
(1.3)
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Once these transformations have been performed on the Lie brackets (1.1) we get after
the limit ε → 0 the commutation relations ofG3 andC3. For the Galilean case, the non-
vanishing commutators are:

[J,Ki ] = εijKj [J, Pi ] = εijPj [J,Ci ] = εijCj
[Ki, P0] = Pi [Ki, C0] = Ci [P0, C0] = D
[P0, Ci ] = −Ki [C0, Pi ] = −Ki [D,Pµ] = Pµ [D,Cµ] = −Cµ. (1.4)

The conformal Galilean Lie algebraG3 is isomorphic tot6(so(2)⊕ so(2, 1)) (the structure
of this type of algebra is described in [3, 4]). We also have a sequence of subalgebras
G(2+ 1) ⊂ G(2+ 1) ⊂ G3, whereG(2+ 1) is the 2+ 1 Galilean algebra with dilation.

Likewise, we obtain the conformal Carroll algebraC3 with non-zero Lie brackets given
by:

[J,Ki ] = εijKj [J, Pi ] = εijPj [J,Ci ] = εijCj
[Ki, Pi ] = P0 [Ki, Ci ] = C0 [P0, Ci ] = −Ki [C0, Pi ] = −Ki
[D,Pµ] = Pµ [D,Cµ] = −Cµ [Pi, Cj ] = −δijD + εij J. (1.5)

The embeddingC(2+ 1) ⊂ C(2+ 1) ⊂ C3 is easily verified (C(2+ 1) means the Carroll
Weyl subalgebra). The conformal algebraC3 turns out to be isomorphic to the 3+1 Poincaré
algebraiso(3, 1). Recall that, in general, kinematical symmetries inN + 1 dimensions can
been seen as conformal symmetries inN dimensions [2].

Non-standard quantum deformations for these conformal algebras have been already
obtained for the 1+1 case [5, 6] being inspired in the well known non-standard or Jordanian
quantumsl(2,R) algebra [7–9]. Their underlying Lie bialgebras come from classicalr-
matrices which satisfy the classical Yang–Baxter equation. The results so obtained show
that non-standard deformations are naturally adapted to a conformal basis, although for
the particular case of the quantum Poincaré algebra an alternative interpretation has been
considered in a null-plane framework [10].

An analysis of non-standard conformal Lie bialgebras for higher dimensions can be
found in [11] where the deformation parameters are interpreted as fundamental mass
parameters. However, to our knowledge, no explicit non-standard quantum Hopf structure
for the conformal algebra further the 1+1 case (so(2, 2)) has been given yet. In this paper
we solve this problem for a precise non-standard quantum deformation ofM3. To begin
with we consider in section 2 the 2+ 1 conformal Lie bialgebra which generalizes that
introduced in [5, 6], and we study its possible non-relativistic Lie bialgebra contractions.
It is shown that there is a unique possible (coboundary) contraction for each conformal
bialgebraG3 and C3. In section 3 the quantum Hopf structure ofM3 is introduced and
those corresponding toG3 and C3 are obtained via contraction in section 4. All of them
have as Hopf subalgebra the corresponding kinematical algebra together with the dilation
generator, but not the kinematical algebra itself (a feature already pointed out in [12]);
hence only the Weyl subalgebra is promoted to a Hopf subalgebra. The quantum conformal
Carroll algebra is related to the 3+ 1 null-plane quantum Poincaré algebra; this fact allows
us to obtain its universalR-matrix from the results given in [13].

2. Conformal Lie bialgebras

The classical r-matrices underlying the non-standard quantum deformations of
sl(2,R) ≡ 〈P0, C0,D〉 andso(2, 2) ≡ 〈P0, P1,K1, C0, C1,D〉 [5, 6] can be written as

r = zD ∧ P0 r = z(D ∧ P0+K1 ∧ P1) (2.1)
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where z is the deformation parameter. The generalization of these expressions for
M3 ' so(3, 2) reads

r = z(D ∧ P0+K1 ∧ P1+K2 ∧ P2+ J ∧ P2) (2.2)

which fulfills the classical Yang–Baxter equation (the presence of the termJ ∧ P2 is
essential for this purpose). The cocommutator of a generatorX is obtained asδ(X) =
[1⊗X +X ⊗ 1, r], namely,

δ(P0) = 0 δ(P1) = 0

δ(P2) = −zP2 ∧ P1 δ(J ) = −zJ ∧ P1

δ(D) = z(D ∧ P0+K1 ∧ P1+K2 ∧ P2+ J ∧ P2)

δ(K1) = z(K1 ∧ P0+D ∧ P1−K2 ∧ P2− J ∧ P2)

δ(K2) = z(K2 ∧ P0+ J ∧ P0+ J ∧ P1+K1 ∧ P2+D ∧ P2)

δ(C0) = z(C0 ∧ P0− C1 ∧ P1− C2 ∧ P2− J ∧K2)

δ(C1) = z(C1 ∧ P0− C0 ∧ P1− C2 ∧ P2− J ∧K2)

δ(C2) = z(C2 ∧ P0+ C1 ∧ P2− C0 ∧ P2+ J ∧K1+ J ∧D). (2.3)

In order to analyse the possible non-relativistic contractions of this conformal Lie
bialgebra one has to consider the Lie algebra transformations (1.2) and (1.3) together with
a mapping on the deformation parameter,z→ ε−nz, wheren is any real number [14]. The
result is that there exists a unique minimal valuen0 of n for each contraction fromM3 to
G3 and C3 in such way that the classicalr-matrix and the cocommutators do not present
divergencies:

M3→ G3: z→ ε−2z (n0 = 2) (2.4)

M3→ C3: z→ ε−1z (n0 = 1). (2.5)

For n > n0 the contractedr-matrix and cocommutators go to zero and forn < n0 they
diverge.

The classical (non-standard)r-matrix and cocommutators of the conformal Galilean Lie
bialgebra so obtained are given by

r = z(K1 ∧ P1+K2 ∧ P2) (2.6)

δ(X) = 0 for X ∈ {J, Pµ,Ki, Ci}
δ(D) = z(K1 ∧ P1+K2 ∧ P2)

δ(C0) = −z(C1 ∧ P1+ C2 ∧ P2) (2.7)

and for the Carroll case we get

r = z(D ∧ P0+K1 ∧ P1+K2 ∧ P2) (2.8)

δ(X) = 0 for X ∈ {J, Pµ}
δ(Y ) = zY ∧ P0 for Y ∈ {Ki, C0}
δ(D) = z(D ∧ P0+K1 ∧ P1+K2 ∧ P2)

δ(C1) = z(C1 ∧ P0− C0 ∧ P1− J ∧K2)

δ(C2) = z(C2 ∧ P0− C0 ∧ P2+ J ∧K1). (2.9)

It is worth remarking that in each of the above Lie bialgebras the corresponding Weyl
subalgebra{J, Pµ,Ki,D} is preserved at a bialgebra level. Note also that the cocommutator
of D coincides with the classicalr-matrix.
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3. Quantum conformal Hopf algebra

We proceed to introduce the Jordanian quantum deformation of the conformal Minkowskian
bialgebra,Uz(M3), in two steps. First, we close the Hopf structure for the Weyl subalgebra,
and second we complete the quantum deformation with the expressions involving the special
conformal transformations. No direct procedure such as the deformation embedding method
(applied, for instance, to the null-plane quantum Poincaré algebra [10]) seems to be useful
now, so that we are forced to deduce formerly the coproduct1 by solving the coassociativity
condition

(1⊗1)1 = (1⊗ 1)1 (3.1)

and by taking into account the fact that the cocommutators (2.3) are related to the first order
of 1 on z, 1(1), by means of

δ = (1(1) − σ ◦1(1)) whereσ(a ⊗ b) = b ⊗ a. (3.2)

Thereafter, the deformed commutation rules follow by imposing the coproduct to be an
algebra homomorphism, that is,1([X, Y ]) = [1(X),1(Y )].

In the following we write down the coproduct and the commutation relations for
Uz(M3); the counit is trivial and the antipode can be easily derived from these results
so we omit them.

(a) Weyl Hopf subalgebraUz(P(2+ 1)).

1(P0) = 1⊗ P0+ P0⊗ 1 1(P1) = 1⊗ P1+ P1⊗ 1

1(P2) = 1⊗ P2+ P2⊗ e−zP1 1(J ) = 1⊗ J + J ⊗ e−zP1

1(D) = 1⊗D +D ⊗ ezP0 coshzP1+K1⊗ ezP0 sinhzP1

+z(J +K2)⊗ ezP0P2+ 1
2z

2(K1+D)⊗ ezP0 ezP1P 2
2

1(K1) = 1⊗K1+K1⊗ ezP0 coshzP1+D ⊗ ezP0 sinhzP1

−z(J +K2)⊗ ezP0P2− 1
2z

2(K1+D)⊗ ezP0 ezP1P 2
2

1(K2) = 1⊗K2+ (J +K2)⊗ ezP0 + z(K1+D)⊗ ezP0 ezP1P2− J ⊗ e−zP1 (3.3)

[J,Ki ] = εijKj [J, P1] = P2 [J, P2] = 1

2z
(e−2zP1 − 1)− z

2
P 2

2

[K1, P0] = 1

z
ezP0 sinhzP1− z

2
ezP0 ezP1P 2

2 [K2, P0] = ezP0 ezP1P2

[K1, P1] = 1

z
(ezP0 coshzP1− 1)− z

2
ezP0 ezP1P 2

2 [K1, P2] = (1− ezP0 e−zP1)P2

[K2, P2] = 1

z
e−zP1(ezP0 − coshzP1)+ z

2
P 2

2 [K2, P1] = (ezP0 ezP1 − 1)P2

[K1,K2] = −J [D,P0] = 1

z
(ezP0 coshzP1− 1)+ z

2
ezP0 ezP1P 2

2

[D,P1] = 1

z
ezP0 sinhzP1+ z

2
ezP0 ezP1P 2

2 [D,P2] = ezP0 e−zP1P2

[Pµ, Pν ] = 0 [J, P0] = 0 [D, J ] = 0 [D,Ki ] = 0. (3.4)

(b) Special conformal transformations.

1(C0) = 1⊗ C0+ C0⊗ ezP0 coshzP1− C1⊗ ezP0 sinhzP1− zC2⊗ ezP0P2

+z(J +K2)⊗ ezP0J + z2(K1+D)⊗ ezP0ezP1P2J

− 1
2z

2(C1− C0)⊗ ezP0 ezP1P 2
2
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1(C1) = 1⊗ C1+ C1⊗ ezP0 coshzP1− C0⊗ ezP0 sinhzP1− zC2⊗ ezP0P2

+z(J +K2)⊗ ezP0J + z2(K1+D)⊗ ezP0 ezP1P2J

− 1
2z

2(C1− C0)⊗ ezP0 ezP1P 2
2

1(C2) = 1⊗ C2+ C2⊗ ezP0 + z(C1− C0)⊗ ezP0 ezP1P2− z(K1+D)⊗ ezP0 ezP1J (3.5)

[J,C0] = −zK1J + 1
2zJ [J,C1] = C2+ zDJ [J,C2] = −C1

[K1, C0] = C1− 1
2z(K1+D)+ zK1D − z(J +K2)

2

[K2, C0] = C2+ 1
2zK2+ zK1J + z(K1+D)(J +K2)

[K1, C1] = C0− 1
2z(K1+D)− 1

2z(K
2
1 +D2)− 1

2z(J +K2)
2

[K2, C2] = C0− 1
2z(K1+D)− 1

2z(K1+D)2− 1
2z(J +K2)

2

[K1, C2] = z(J +K2)D [K2, C1] = −zDJ [P2, C2] = −D
[P0, C0] = D − z ezP0 ezP1P2J [P1, C1] = −D − z ezP0 ezP1P2J

[C1, P0] = K1+ z ezP0 ezP1P2J [C2, P0] = K2− (ezP0 ezP1 − 1)J

[P1, C0] = K1− z ezP0 ezP1P2J [P2, C1] = −ezP0 e−zP1J + zDP2

[P2, C0] = K2− zK1P2+ 1
2zP2− (ezP0 e−zP1 − 1)J [P1, C2] = ezP0 ezP1J

[D,C0] = −C0+ 1
2z(K

2
1 +D2)+ 1

2z(J +K2)
2

[D,C1] = −C1− zK1D [D,C2] = −C2− z(J +K2)D

[C1, C2] = zC2− z(J +K2)C1+ z(K1+D)C2

[C0, C1] = 1
2z(C1− C0)+ z(J +K2)C2 [C0, C2] = −z(J +K2)C1+ 1

2zC2. (3.6)

Recall that the Drinfel’d–Jimboq-deformation of so(3, 2) introduced in [15] was
performed in a kinematical basis (as the algebra of the motion group of the 3+ 1 anti-de
Sitter spacetime) and the two primitive generators were a rotation and the time translation.
Now the primitive generators are again two (the rank of the algebra): the time translationP0

and a space translationP1. On the other hand, the symmetry betweenPµ andCµ is broken
in the quantum case (compare with (1.1)); for instance, allPµ commute among themselves
but theCµ do not.

4. Quantum contractions

The contractionUz(M3) → Uz(G3) is carried out by applying the transformations (1.2)
and (2.4) to the results presented in the previous section. Once the limitε → 0 is taken,
the resultant expressions are rather simplified. The coproduct and deformed commutation
relations of the non-standard quantum conformal Galilean algebraUz(G3) are

1(X) = 1⊗X +X ⊗ 1 for X ∈ {J, Pµ,Ki, Ci}
1(D) = 1⊗D +D ⊗ 1+ zK1⊗ P1+ zK2⊗ P2

1(C0) = 1⊗ C0+ C0⊗ 1− zC1⊗ P1− zC2⊗ P2 (4.1)

[D,P0] = P0+ 1
2z(P

2
1 + P 2

2 ) [D,C0] = −C0+ 1
2z(K

2
1 +K2

2). (4.2)

The remaining commutators are non-deformed and given by (1.4). On the other hand, the
element

R = exp{r} = exp{z(K1 ∧ P1+K2 ∧ P2)}
= exp{−zP2⊗K2} exp{−zP1⊗K1} exp{zK1⊗ P1} exp{zK2⊗ P2} (4.3)
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is a trivial solution of the quantum Yang–Baxter equation since the four generators involved
commute. Furthermore, it is easy to check that the property

R1(X)R−1 = σ ◦1(X) (4.4)

is satisfied for anyX ∈ Uz(G3). ThenR is a quantum universalR-matrix for Uz(G3).
Similarly, the contractionUz(M3) → Uz(C3) is provided by the mappings (1.3) and

(2.5) applied on the conformal Hopf algebraUz(M3) together with the limitε → 0.
The coproduct and non-vanishing commutation relations of the quantum conformal Carroll
algebraUz(C3) are given as follows:

1(X) = 1⊗X +X ⊗ 1 for X ∈ {J, Pµ}
1(Y) = 1⊗ Y + Y ⊗ ezP0 for Y ∈ {Ki, C0}
1(D) = 1⊗D +D ⊗ ezP0 + zK1⊗ ezP0P1+ zK2⊗ ezP0P2

1(C1) = 1⊗ C1+ C1⊗ ezP0 − zC0⊗ ezP0P1+ zK2⊗ ezP0J

1(C2) = 1⊗ C2+ C2⊗ ezP0 − zC0⊗ ezP0P2− zK1⊗ ezP0J (4.5)

[J,Ki ] = εijKj [J, Pi ] = εijPj [J,Ci ] = εijCj
[Ki, Pi ] = 1

z
(ezP0 − 1) [Ki, Ci ] = C0− z

2
(K2

1 +K2
2) [P0, Ci ] = −Ki

[C0, Pi ] = −Ki [D,P0] = 1

z
(ezP0 − 1) [D,Pi ] = ezP0Pi

[D,C0] = −C0+ z
2
(K2

1 +K2
2) [D,Ci ] = −Ci − zKiD

[Pi, Cj ] = −δijD + εij ezP0J [C1, C2] = z(K1C2−K2C1). (4.6)

It is rather remarkable thatUz(C3) can be shown to be isomorphic to the null-plane
quantum Poincaré algebra [10] in the basis used in [13] by means of

P ′+ = P0 P ′− = −C0 P ′i = Ki J ′3 = −J
K ′3 = D E′i = −Pi F ′i = Ci z′ = z/2 (4.7)

where the primed generators and deformation parameter correspond to the null-plane
quantum Poincaré algebra. As a straightforward consequence the universalR-matrix for
Uz(C3) (satisfying the quantum Yang–Baxter equation and relation (4.4)) reads

R = exp{−zP2⊗K2} exp{−zP1⊗K1} exp{−zP0⊗D}
× exp{zD ⊗ P0} exp{zK1⊗ P1} exp{zK2⊗ P2}. (4.8)

5. Concluding remarks

Summarizing, we have obtained a new quantum deformation ofso(3, 2) and we have
related three non-standard quantum conformal algebras via contraction processes, all of
them containing the corresponding Weyl subalgebra as a Hopf subalgebra:

Uz(G(2+ 1)) ⊂ Uz(G3)←− Uz(P(2+ 1)) ⊂ Uz(M3) −→ Uz(C(2+ 1)) ⊂ Uz(C3). (5.1)

For the contracted quantum algebras the universalR-matrices have been given in a factorized
form. The expression of theR-matrix associated toUz(M3) remains as an open problem.

We would like to note that we could have written the classicalr-matrix for so(2, 2)
(2.1) as

r = z(D ∧ P1+K1 ∧ P0). (5.2)
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Indeed, this was exactly the expression chosen in [5, 6]. Its generalization toso(3, 2) would
be

r = z(D ∧ P2+K1 ∧ P1+K2 ∧ P0+ J ∧ P1). (5.3)

From a mathematical point of view, the corresponding quantum deformation is equivalent to
the one just studied via a simple redefinition of the generators. However, both deformations
exhibit different physical features which are stronger when contractions are carried out.
More explicitly, the quantum conformal Galilean and Carroll algebras coming from (5.3)
are no longer equivalent to those above obtained. For both of them the transformation ofz

would bez→ ε−2z (n0 = 2) leading to the following classicalr-matrices:

G3: r = zK1 ∧ P1 C3: r = zK2 ∧ P0. (5.4)

Therefore, the latter could not be related to the null-plane quantum Poincaré algebra. The
analysis of these and further possibilities will be presented elsewhere.
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